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Exact solutions are presented for the three-dimensional creeping motion of a sphere 
of arbitrary size and position between two plane parallel walls for the following 
conditions: (a) pure translation parallel to two stationary walls, ( b )  pure rotation 
about an axis parallel to the walls, ( c )  Couette flow past a rigidly held sphere induced 
by the motion of one of the boundafies and (d )  two-dimensional Poiseuille flow past 
a rigidly held sphere in a channel. The combined analytic and numerical solution 
procedure is the first application for bounded flow of the three-dimensional boundary 
collocation theory developed in Ganatos, Pfeffer & Weinbaum (1978). The accuracy 
of the solution technique is tested by detailed comparison with the exact bipolar 
co-ordinate solutions of Goldman, Cox & Brenner (1967a, b )  for the drag and torque 
on a sphere translating parallel to a single plane wall, rotating adjacent to  the wall 
or in the presence of a shear field. In  all cases, the converged collocation solutions are 
in perfect agreement with the exact solutions for all spacings tested. The new collo- 
cation solutions have also been used to test the accuracy of existing solutions for the 
motion of a sphere parallel to two walls using the method of reflexions technique. The 
first-order reflexion theory of Ho & Leal (1974) provides reasonable agreement with 
the present results for the drag when the sphere is five or more radii from both walls. 
A t  closer spacings first-order reflexion theory is highly inaccurate and predicts an 
erroneous direction for the torque on the sphere for a wide range of sphere positions. 
Comparison with the classical higher-order method of reflexions solutions of Faxen 
(1923) reveals that the convergence of the multiple reflexion series solution is poor 
when the sphere centre is less than two radii from either boundary. 

Solutions have also been obtained for the fluid velocity field. These solutions show 
that, for certain wall spacings and particle positions, a separated region of closed 
streamlines forms adjacent to the sphere which reverses the direction of the torque 
acting on a translating sphere. 

1. Introduction 
In this part 2 of the study we present the first application of the three-dimensional 

boundary collocation theory developed in Ganatos, Pfeffer & Weinbaum (1978) for 
strongly interacting spheres to bounded creeping-motion problems with planar 
symmetry. To illustrate the solution procedure we have selected an unsolved Stokes 
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flow problem of long-standing interest, the slow longitudinal motion of a spherical 
particle of arbitrary size and position between two infinite plane parallel boundaries. 
The corresponding problem for the transverse motion of a sphere between two 
parallel walls has been treated in part 1, Ganatos, Weinbaum & PfefTer (1980). Some 
recent biological and engineering applications where this flow geometry is important 
are described in the introduction of this previous paper. 

The earliest theoretical treatment of the three-dimensional longitudinal flow 
situation was presented by Faxen (1923)) details of which are given in Happel & 
Brenner (1973, pp. 322-327). Faxen considered the problem of a sphere translating 
between two parallel walls for the special cases where the sphere is either moving 
along the centre-line or in a plane a t  one-quarter the distance between the two walls. 
Faxen obtained expressions foi- the force and torque acting on the sphere by the method 
of reflexions using the five leading terms in the iterative series solution. This iterative 
method, which alternately satisfies boundary conditions on the sphere and on the 
infinite plane walls, gives accurate results only if both walls are sufficiently far re- 
moved from the surface of the sphere. The present solutions show that, at  close 
particle-to-wall spacings, the higher-order interaction effects become significant and 
the leading terms of the iterative series give a poor description of the particle-wall 
interactions. Wakiya (1956) used a similar approach to treat the problem of a rigidly 
held sphere in Couette flow or two-dimensional Poiseuille flow. Wakiya’s solution is 
also only for the case where the sphere is a t  one-quarter the distance between the walls. 

The simpler flow situation of the rotation and translation of a sphere parallel to a 
single plane wall or in the presence of a linear shear field has been carefully examined 
by Goldman, Cox & Brenner ( 1 9 6 7 ~ )  b) .  The exact solution method used by these 
aubhors for a single wall, however, cannot be applied when two walls are present since 
the solution is based on the limiting case of a spherical bipolar series expansion first 
introduced by O’Neill (1964) in which one of the spheres is taken as infinitely large. 
Halow & Wills (1970) simply added the contribution of two individual walls in order 
to obtain an estimate of the force acting on a sphere a t  any position between the two 
walls. At best, this approach gives only a first-order approximation to the true drag 
on the sphere and is incapable of predicting higher-order effects such as the formation 
of separated regions of closed streamlines which occur in the presence of two walls. 

The most complete study to date of the two-wall problem is the work of Ho & Leal 
(1974). These authors used a perturbation method to study the lateral migration of a 
neutrally buoyant rigid sphere due to weak inertia effects when suspended in a fluid 
which is undergoing either simple shear flow or two-dimensional Poiseuille flow 
between two infinite plane boundaries. Their zeroth-order perturbation solution, 
which corresponds to the inertia-free Stokes flow solution, was obtained by the 
method of reflexions using two reflected fields. Solutions are presented for the motion 
of a sphere both parallel and perpendicular to  the two plane walls at  an arbitrary 
position between them. For the transverse flow problem it has been shown in part 1 
of this investigation that the first two terms of the iterative series solution provide a 
reasonable description only if the sphere is a t  least five radii removed from each 
boundary. 

This paper is presented in five sections. Section 2 contains the formulation for 
translation or rotation of a sphere along an axis parallel to two plane walls in the 
presence of a unidirectional flow between the walls. In 3 3, the solution obtained in 
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FIGURE 1. Geometry for the asymmetric flow configuration. 

3 2 is compared with exact published results of Gcldman et al. (1967a, b )  for the 
limiting case of a single wall. Solutions for the force and torque acting on the sphere 
in a variety of two-wall flow configurations are presented in 8 4. Finally, 5 5 contains 
some comments about the application of the solution technique in future research. 

2. Mathematical formulation 
In this section, the formulation will be presented for the following basic asymmetric 

flow problems involving a sphere of arbitrary size and position between two infinite 
plane parallel boundaries : 

(a)  translation without rotation of the sphere parallel to  two stationary walls; 
( b )  rotation without any translation of the sphere; 
(c) shear flow past a rigidly held sphere induced by the motion of one of the boun- 

daries parallel to itself; 
( d )  Poiseuille flow past a rigidly held sphere in a channel. Solutions for any com- 

bination of these motions may be obtained by a simple superposition of solutions. 
The resulting motion of the sphere when it is not rigidly held in place may also be 
readily obtained from these basic solutions. 

The geometry of the flow configuration is shown in figure 1. A sphere of radius a 
moves parallel to the two confining walls with constant velocity U .  The fluid motion 
far removed from the sphere is unidirectional and parallel to the walls. Bretherton 
(1962) has shown that, for such a unidirectional flow, there is no lateral force acting 
on the sphere in the Stokes flow limit. The equations of motion for the fluid are: 

pV2V = v p ,  v.v = 0. (2.1a, b )  

For the geometry of the problem at hand, it is convenient to introduce rectangular 
(x, y, z )  and spherical ( r ,  8 ,$ )  co-ordinate systems whose origins coincide a t  the sphere 
centre. The velocity field V is decomposed into three parts: 

Y = V,+V,+V,. (2.2) 
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The part V, represents the unidirectional velocity profile between the two plates 
far removed from the sphere. This profile independently satisfies (2.1) and the no-slip 
boundary conditions on the walls. For Poiseuille flow 

4~(Z+b)(z-C),. v, = - 1, (b  + c ) ~  
(2.3a) 

where V,  is the centre-line velocity. For the shear flow resulting when the wall a t  z = c 
in motion 

v, = S(Z + b )  i, (2.3b) 

where S represents the velocity gradient which is constant. 
The part V, represents an infinite series containing all the simply separable solutions 

of (2.1) in spherical co-ordinates which have planar symmetry about the plane y = 0 
and vanish as r + co. This solution, which is a special case of Lamb’s (1945) spherical 
harmonic series representation, is derived in Ganatos et al. (1978), and has the form 
of a double series with indices m and n. For the problem a t  hand, in which translational 
motion of the sphere occurs only along the x-axis and rotation only about the y-axis, 
only terms containing m = 1 are needed to describe the spherical disturbances. Thus 
the required form of the spherical solution is 

where 

and 

V, = usi+w,j+wSr(, 

us = 2 [A,A;+B,B;+C,C;], 
m 

n= 1 

m - 
Us = c [AnA;+BnB:+CnC:], 

w, = 2 [AnA:+B,B,”+CnC;], 

n=l  

W 

n = l  

(2.4) 

( 2 . 5 ~ )  

(2.5b) 

( 2 . 5 ~ )  

( 2 . 6 ~ )  

(2.6b) 

( 2 . 6 ~ )  

(2.6d) 

(2.6e) 

(2.6f 1 

( 2 . W  
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Z’: = - T“+2 n E+, (5 )  cos 4, 
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(2.6h) 
1 

1 c; = -;;;;iP:(c)cosq5. (2.6i) 

Here Pp is the associated Legendre function of order n and degree m and 5 = cos8. 
A,, B, and C, are unknown constants which will be determined by satisfying the no- 
slip boundary conditions on the surface of the sphere in the presence of the confining 
walls. 

The part V, represents a double integral of all separable solutions of (2.1) in rect- 
angular co-ordinates which produce finite velocities everywhere in the flow field and 
is given by the double Fourier integral 

where 

U, = SU,j-omDl(a,/3,z) cosaxcospydadp, 

~ , (a ,p ,z )  = [ - A * - ~ + A * *  ap K ( ~ + - z  p K 2 )  +~***pz]eKZ 

D,(a, p, 2) = [A *a2 - A **pz + A ***( 1 - K Z ) ]  e K Z  

+[B*az-B**/3z+B***(l + K Z ) ] ~ - ~ ” ,  ( 2 . 9 ~ )  

and K~ = a2+p2. Here, the starred A and B coefficients are unknown functions of 
separation variables a and p. By proper choice of these functions, V ,  is capable of 
exactly cancelling the disturbances produced by the sphere along the two planar 
boundaries. 

To assist the reader in following the rather lengthy theoretical development which 
follows we shall briefly outline the general solution procedure. We seek a solution, 
equation (2 .2) ,  where V,, V, and V,, are given respectively by equations (2.3), (2.5) 
and (2.8), which satisfies appropriate viscous flow boundary conditions on the con- 
fining walls and the surface of the sphere. Each of the fundamental solutions already 
satisfies the governing equation (2 .1)  at  each point in the flow field, the proper bounded- 
ness conditions at  infinity and i&e requirements of planar symmetry. The next step, 
which is the crucial one in the solution procedure, is to satisfy analytically the no-slip 
boundary conditions on both infinite confining walls simultaneously for an arbitrary 
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disturbance representing a sphere of unspecified size, position and velocity. The 
importance of doing this analytically stems from the fact that, whereas boundary 
collocation techniques are relatively easy to employ for finite boundaries, such as 
the surface of a sphere, they are very difficult to apply to infinite domain boundaries. 
In essence, one wishes to determine the functions Di,  i = 1 , 2 , 3 ,  in equation (2.9) 
which satisfy the no-slip conditions on the planar walls for an arbitrary set of sphere 
coefficients A,, B, and C, in equation (2.5). To accomplish this one must first express 
the spherical disturbances in rectangular co-ordinates so that the boundary conditions 
can be applied on constant co-ordinate surfaces representing the planar walls, and 
then invert the double Fourier integral transform of this disturbance so as to exactly 
satisfy the no-slip conditions on these infinite surfaces. Once this inversion is performed 
and the Di functions expressed in terms of the A,, B, and C,, the integrals in equation 
(2.8) are evaluated and the unknown constants in the spherical series expansion 
determined so as to satisfy the sphere boundary conditions by the numerical boundary 
collocation scheme devised foI three-dimensional spherical disturbances in Ganatos 
et at?. (1978). 

In accord with the above solution outline, spherical coordinates ( r ,  0, #) are related 
t o  the rectangular system (2, y, z )  and the general spherical disturbances ( 2 . 5 )  are 
expressed in the latter reference frame. The desired co-ordinate transformation is 
(see figure 1) 

r = (x,+y2+22)3, ( 2 . 1 0 ~ )  

(2.lOb) 

(2.10c) 

Application of the three boundary conditions u = V,,  v = 0 and w = 0 along the 
two walls yields 

/om/om D,(a,P, x i )  coscexcospydaddp 

OD 

i = 1,2, (2.11) 

where zi, i = 1,2,  is the value of x at the two walls (zl = - b ,  z2 = c ) .  The right-hand 
sides of (2.11) represent the spherical disturbances as felt by the two planar boun- 
daries. Equations (2.11) reveal that the unknown D,, D, and D, functions evaluated 
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at the two walls are simply Fourier transforms of these disturbances. These equations 
may be inverted to give 

I +C,CA(S, t , Z i ) ]  cosascosptdsdt, I 1 

+C,C,"(s, t, zi)J sinascosptdsdt, 1 
Analytic evaluation of the double integrals required in (2 .12)  for arbitrary n is 

based on expressing the associated Legendre function by its polynomial representation 

(2.13) 

Here the square bracket [XI represents the largest whole integer which is less than or 
equal to x. Once this substitution is made, the first integration may be performed 
using the integral representations of the modified Bessel functions of the second kind. 
These representations are found in Erdelyi et al. (1954) .  The second integration, now 
involving Fourier transforms of modified Bessel functions of the second kind, may 
also be performed using results given in the above reference. The required resuIts of 
these integrations are given below. 
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( 2 / 4 f  (2.15) 
( - 2)q‘p!(n - 2q - m) ! zp+m flnmq(Zi) = 

and K ,  is the modified Bessel function of the second kind of order v. Application of 
these results to (2.12) gives 

where the starred dn, gn and gn functions can be expressed in closed form in terms 
of the Fi integrals, equation (2.14), and are listed in appendix A. Equations (2.16) 
give the D,, D,  and D, functions evaluated at  the two walls in terms of the as yet 
unknown spherical coefficients A,, B, and C,. These functions may be obtained for 
any value of z by applying (2.9) at the two walls z = - b,  c. This procedure generates 
six linear algebraic equations which may be solved simultaneously to  yield the six 
unknown functions A*, A**, A***, B*, B** and B*** contained in (2.9). Once this 
is done, these functions are substituted back into (2.9) to give the D,, D, and D, 
functions at  any value of x .  The process is very tedious but straightforward. The final 
results are 

(2.17 a )  

(2.17 b )  
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sinh p sinh 7 sinh v 
7 V 

G,, , (p ,v )  = 47pv 

(2.17 c) 

( 2 . 1 8 ~ )  

coshp - - sinh 7 - sinh v sinhp sinhr cosh v ] ) / & ~ ,  (2.18b) 
7 v  7 

sinh 7 cash p - el)/ 6, 6,. (2.18 d )  
V 

In  the above equations, the subscripts 1 , 3  and 2,4 refer to the plus and minus signs on 
the right-hand sides, p and v are dummy variables, 

6, = 2 sinhr, 6, = 4[sinh2r - 7,], (2.19a, b )  

and 
(+ = K ( Z + b ) ,  7 = K ( Z - C )  

7 = K ( b  + C ) .  

(2.20a, b )  

(2.20c) 

The expressions for the D,, D, and D, functions, which are still in terms of the unknown 
spherical coefficients A,, B, and C,, are substituted into (2.8) to yield V,. 

The double integrals required in (2.8) cannot be performed analytically. However, 
instead of carrying out the integration for 0 < a < co, 0 < P < co the substitution 

a = K C O S ~ ,  P = Ksin y 
transforms (2.8) into 

(2.21a, b )  

KD,(K, y ,  x )  cos (KX cosy) cos (KY sin y )  dy d ~ ,  (2.22a) 

KD,(K, y, z )  sin (KX cos y )  sin (KY sin y )  dy d K ,  (2.22b) 

KD,(K, y, z )  sin (KX cosy) cos (KY sin y )  dy dK, (2.22c) 

where the D,, D,  and D3 functions are now functions of K and y. The advantage of 
this form is that the inner integration with respect t o y  may be performed analytically 
using results for Fourier transforms found in Erdelyi et al. (1954). The required for- 
mulas are summarized in appendix B. The outer integrals with respect to K must 
still be performed numerically. 
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After performing the integration with respect to y and substituting ( 2 . 5 )  and (2.22) 
into (2.2), the following expressions for the local fluid velocity are obtained: 

where 
v = u?+vj+wL, (2.23) 

( 2 . 2 4 ~ )  

(2 .24b)  

( 2 . 2 4 ~ )  

Here the primed A,, Bn and C, functions are given by (2.6) and (2.10). The primed 
d,, g, and U, functions are somewhat lengthy and are listed in appendix C. 

The solution (2.23) satisfies the no-slip boundary conditions all along the two walls 
for each value of the constant coefficients A,, B, and C,. The integrals appearing in 
the primed dn, 9?, and %, functions in appendix C must be performed numerically 
using the Taylor series representation of the integrands for small values of K to avoid 
round-off error and their asymptotic formulae for large values of K to avoid machine 
overflows. 

The boundary conditions remaining to  be satisfied on the sphere surface, r = a, are 

U =  U ,  v = Q ,  w = O ,  (2.25a, b, c) 

where U is the velocity with which the sphere is translating parallel to the walls. 
The collocation technique presented in Ganatos et al. (1978) may now be used for this 
purpose. At r = a, boundary conditions (2 .25)  are applied at M points on the surface 
of the sphere and the series solution (2.24) is truncated after M terms. This generates 
a system of 3 M  linear algebraic equations for the 3M unknown coeficients A,, B, 
and Cn of the spherical solution. The solution for the velocity field is completely known 
once these coefficients are determined. 

The hydrodynamic force and torque acting on the sphere are found from Ganatos 
et al. (1978) to be 

F =  -8npA,f, T =  -87~1uC~j. (2.26 a, b )  

Using the notation of Goldman et al. (1967a, 6 )  for the four problems outlined a t  
the beginning of this section, the force and torque acting on the sphere are given by 

F = 67rpaUP$f, T = 8n,ua2UTbj (2.27a, b )  
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for a sphere translating with velocity U in the x direction. For a sphere rotating with 
angular velocity R about the y axis 

F = 6npa2RFLf,  T = 8npa3RTLj. ( 2 . 2 8 ~ )  b )  

For shear flow past a rigidly held sphere induced by the steady motion of the boundary 
at 2 = c, 

F = 6npabSF$f, T = 4npa3ST;j, (2.29a, b )  

while for Poiseuille flow past a rigidly held sphere between two stationary walls 

F = 6n,uaV,F$f, T = 8r,ua2V,Tfj. ( 2 . 3 0 ~ )  b )  

The non-dimensional force and torque coefficients defined by (2.27)-( 2.30) are found 
using (2.26)) i.e. 

( 2 . 3 1 ~ )  b )  

( 2 . 3 2 ~ )  b )  

( 2 . 3 3 ~ )  b )  

( 2 . 3 4 ~ )  b )  

where the A,  and C, coefficients are determined from the collocation of (2.24) with 
the appropriate boundary conditions. 

3. Solutions for the motion of a sphere parallel to a single plane wall 
In this section, the accuracy and convergence characteristics of the collocation 

procedure applied to (2.24) will be tested by comparing solutions obtained by the 
present method with the exact results of Goldman et al. ( 1 9 6 7 ~ )  for translation with- 
out rotation of a sphere parallel to a single plane wall and for rotation about an axis 
parallel to the wall without any translation and with the exact solutions of Goldman 
et al. (1  967 b )  for shear flow past a rigidly held sphere in the presence of a single planar 
boundary. 

For the purpose of making the comparison, the effect of the second wall may be 
removed from the more general two-wall solution presented in the previous section 
by taking the limit as c + co. In this limit the Gi functions in equation (2.18) and the 
Hi functions in appendix C reduce to: 

G,,Z(a, 7 -+ -00) = T G,,J7  + -00, a) = 0, ( 3 . 1 ~ )  b )  

(3 . lc ,  d )  G 3 , 4 ( ~ ,  7 .+ -CO)  = ( 1  T a )  e-‘, G3,4(7 + -a, a) = 0, 

G5(7 .+ -03) = e-a, G,(a) = 0, (3.1 e ,  f 1 

G 6 ( a , 7 +  - C O )  = - a e - g ,  G,(q+ - c o , ~ )  = 0; (3.19, h)  

H ~ ( c  + CO)  = 0, i = 1, ..., 24. (3.2) 
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M 

2 
4 
6 
8 

10 
12 
14 

Exact 

2 
4 
6 
8 

10 
12 
14 
16 
18 

Exact 

2 
4 
6 
8 

10 
12 
14 
16 
18 

Exact 

u = 0.5 u = 1.0 u = 1.5 01 = 2.0 u = 3.0 
b/a = 1.13 b/a = 1.54 b/a  = 2.35 b/a = 3.76 b/a  = 10.1 

(a)  Convergence of F: for single wall at various sphere-to-wall spacing8 

- 1.705 - 1.465 - 1.285 - 1.169 - 1.059 
- 2.031 - 1.560 - 1.307 - 1.174 - 1.059 
-2.121 - 1.567 - 1.308 - 1.174 
- 2.144 - 1.567 - 1.308 
- 2.149 
- 2.151 
- 2.151 

-2.151 - 1.567 - 1.308 - 1.174 - 1.059 

( b )  Convergence of Tt for  single wall at various sphere-to-wall spacings 

0.04529 0~01200 0.002 402 0.0004049 8.722 x lo-' 
0.063 57 0.013 36 0.002 554 0.0004165 8.761 x 
0.070 73 0.01455 0.002641 0.000421 6 8.775 x lo-'' 
0.072 35 0.01464 0.002 642 0.000421 6 8.775 x lo-' 
0,073 15 0.014 65 0.002 642 
0.073 52 0.01465 
0.073 65 
0.073 70 
0.073 71 

0.073 72 0.01465 0.002642 0.000 421 6 8.774 x 

( c )  Convergence of B': for  single wall at varicus sphere-to-wall spacings 

0.204 1 
0.1232 
0.104 1 
0.099 61 
0.09868 
0.098 44 
0-098 36 
0.09832 
0.09830 

0.098 29 

0.055 88 0.01027 0.000 157 9 3.078 x 
0.022 29 0.003 705 0.0005726 1.173 x 
0.019 78 0-003 530 O*OOO 562 3 1.170 x 
0-01956 0.003 523 0.000 562 1 1.170 x 
0.01954 0.003 523 0.000 562 1 
0.01953 
0.01953 

1.170 x 0.01953 0.003 523 0.000 562 1 

TABLE 1 

Careful examination of (2.24) shows that when the no-slip boundary conditions are 
applied on the surface of the sphere r = a, the solution of the coefficient matrix 
generated becomes independent of the qi co-ordinate of the boundary points. Thus, 
in contrast to the more general collocation procedure presented in Ganatos et al. 
(1978)  in which the no-slip boundary conditions are satisfied at discrete points on 
the sphere surface, for the problem a t  hand, when the no-slip conditions are satisfied 
at  the point r = a, 8 = constant, qi = constant, the boundary conditions are actually 
satisfied on the ring r = a, 8 = constant, 0 Q qi < 27~. Thus in selecting the boundary 
points, any value of qi may be used except qi = 0,  am or m since the coefficient matrix 
becomes singular for these values. 

The most advantageous collocation point to  choose on the surface corresponding 
to the lowest-order truncation of the infinite series (2.24) is 8 = in since this point 
has the greatest control of the projected area of the sphere normal to its direction of 
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a = 0.6, a = 1.0, a = 1.5, a = 2.0, 01 = 3.0, 
b/a = 1.13 b/a = 1.54 b/a = 2.35 b/a = 3.76 b/a = 10.1 

( d )  Convergence of T; for single wall at various qhere-to-wall qmings  

- 1.205 - 1.079 - 1.023 - 1.006 - 1.000 
- 1.346 - 1.099 - 1.025 - 1.006 - 1.000 
- 1.380 - 1.100 - 1.025 
- 1.387 - 1.100 
- 1.388 
- 1.388 

- 1.388 - 1.100 - 1.025 - 1.006 - 1.000 

M 

2 
4 
6 
8 

10 
12 

Exact 

2 
4 
6 
8 

Exact 

2 
4 
6 
8 

10 

Exact 

( e )  Convergence of F; for  single wall at various sphere-to-wall spacings 

1.514 1.392 1.262 1.163 1.059 
1.614 1.438 1.278 1.167 1.059 
1.616 1.439 1.278 1-167 
1.616 1.439 

1.616 1.439 1.278 1.167 1.059 

( f )  Convergeme of Tl for single wall at various sphere-to-wall spacings 

0.9799 0.981 1 0.9913 0.9972 0.9998 
0.9548 0.9748 0.9903 0.9971 0.9998 
0.9535 0.9742 0.9901 0.9771 
0.9537 0.9742 0.9901 
0-9537 

0.9537 0.9742 0.9901 0.9971 0.9998 

TABLE 1 (continaed) 

motion and also satisfies the no-slip boundary conditions exactly on the largest ring 
around the sphere. Unfortunately, the coefficient matrix becomes singular if this 
point is used. Convergence trials for the force and torque coefficients were performed 
using two adjacent points 8 = Qn f 6 as 6 -+ 0. Tables presenting the results of these 
tests are contained in Ganatos ( I  979) and will not be repeated here. Convergence for 
all six coefficients to five significant figures was obtained for B < 0.01" at all spacings 
tested. Additional points are selected as mirror-image pairs about the plane 8 = #n. 

In the first scheme used for spacing the additional boundary points, the semi- 
circular arc r = a, 0 < 8 < n, $ = constant was divided into equal segments (e.g., for 
M = 6, 8 = 30, 60, 89.99, 90.01, 120, 150"). Solutions for the force and torque coeffi- 
cients with increasing M a t  various spacings are compared with the exact results of 
Goldman et aE. (1967a, b )  in table 1. The bipolar co-ordinate parameter a used by 
these authors is related to the sphere-wall spacing via a = cosh-* (bla). Convergence 
of F:, Try, Fg and TS, is quickly achieved to four significant digits at all spacings tested 
and solutions obtained are in perfect agreement with exact values. Solutions for T i  
and Fj are within 0.01 % of the exact solutions a t  the closest spacing a = 0.5 
(b/a = 1.13) for M = I8 and in perfect agreement with the exact solutions at  all 
other spacings. Unfortunately, the execution time required to obtain solutions for 
iM > 18 (more than 35 min on an AMDAHL 470/V6 computer) was prohibitively 
long. The error in the last digit of the converged value of T i  for a = 3 is believed to 
be due to round-off error. 

At this point it would be of interest to determine how placing a boundary point 
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M 

4 
6 
8 

10 
12 
14 

Exact 

4 
6 
8 

10 
12 
14 
16 
18 

Exact 

4 
6 
8 

10 
12 
14 
16 
18 

Exact 

a = 3.0 = 0.5 a = 1.0 u = 1.5 a = 2.0 

(a) Convergence of 3': for single wall at various sphere-to-wall spacings 

b /a  = 1.13 b /a  = 1.54 b/a = 2.35 b/a = 3.76 b/a  = 10.1 

- 4.084 - 1.598 - 1.310 - 1.174 - 1.059 
- 2.176 - 1.567 - 1.308 - 1.174 - 1.059 
- 2.140 - 1.567 - 1.308 
- 2.148 
- 2.151 
- 2.151 
-2.151 - 1.567 - 1.308 - 1.174 - 1.059 

( b )  Convergence of Ti for single wall at various sphere-to-wall spacings 

- 0.380 7 0.011 18 0.002478 0-000411 8 8.747 x 10-8 
0.085 67 0*01504 0-002 651 0.000421 8 8.775 x lo-' 
0.078 82 0.01465 0.002 642 0.000 421 6 8.775 x 
0.075 18 0.01465 0.002 642 0.000421 6 
0.073 98 
0.073 75 
0.073 72 
0.073 72 
0-073 72 0.01465 , 0.002 642 0.000 421 6 8.774 x lo-* 

(c) Comergence of F: for single wall at various sphere-to-wall spacings 

- 2.547 0.0009137 0.002677 0.0005181 1.159 x 
0.096 06 0-020 17 0.003 536 0.000 562 4 1.170 x 
0-1116 0.01956 0.003 523 0.000 862 1 1.170 x 
0.101 7 0.019 53 0.003 523 0.000 562 1 
0.098 93 0.01963 
0.098 39 
0.098 30 
0.098 29 

0.098 29 0.019 53 0.003 523 0.000562 1 1.170 x 

TABLE 2 

near the wall 6 = 0 , ~  would affect the rate of convergence especially a t  close spacings. 
The singularity of the coefficient matrix a t  6 = 0,  7~ is avoided by using the points 
6 = E ,  in & E ,  n - E and taking the limit as E + 0 until convergence is achieved to the 
desired number of digits. Again, convergence to five significant digits was achieved 
for all spacings for E < 0.01". With additional points equally spaced along the arc 
0 c 0 c n on the sphere (e.g., for M = 6,O = 0.01, 45, 89.99,90.01, 135, 179.99"), the 
rate of convergence with increasing M is examined in table 2. In contrast to the case 
of a sphere translating perpendicular to a single plane wall, Ganatos, Weinbaum & 
Pfeffer (1980), where a similar collocation scheme was used and the rate of conver- 
gence of the drag coefficient was accelerated, comparison of table 2 (a )  with table 1 (a) 
shows no change in the rate of convergence in F;. This behaviour may be explained 
by the fact that for a sphere moving perpendicular to a wall rather large fluid velocities 
can be generated in the intervening fluid gap when its dimensions become smaller 
than the sphere radius. The inclusion of boundary points on the surface of the sphere 
in the region of close apposition for the transverse motion therefore can significantly 
improve the description of the flow field. On the other hand, the flow velocities pro- 
duced by a sphere translating parallel to a wall are of the same order as the sphere 
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a = 3.0, 
b/a = 1.13 b/a = 1.64 b/a = 2.35 bla = 3.76 b/a = 10.1 

- 2.265 - 1.107 - 1.026 - 1.006 - 1.000 
- 1.378 - 1.099 - 1.025 - 1.006 - 1.000 
- 1.381 - 1.100 
- 1.386 - 1.100 
- 1.387 
- 1.388 
- 1.388 

- 1.388 - 1.100 - 1.025 - 1.006 - 1.000 

01 = 0.5, a = 1.0, 01 = 1.5, a = 2.0, 

(d )  Convergence of Ti for single wall at various sphere-to-wall spacings 
M 

4 
6 
8 

10 
12 
14 
16 

Exact 

4 
6 
8 

Exact 

4 
6 
8 

10 
12 

Exact 

( e )  Conmergence of FZ for single wall at various sphere-to-wall spacing8 

1.632 1.442 1.279 1.167 1.059 
1.616 1.439 1-278 1.167 1.059 
1.616 1.439 1-278 

1.616 1.439 1.278 1.167 1.059 

( f )  Convergence of TZ for single wall at various sphere-to-wall spacings 

0.958 0 0.973 0 0.990 3 0.997 1 0.999 8 
0.953 9 0.974 3 0.990 1 0.997 1 0.999 8 
0.953 5 0.9742 0.990 1 
0.963 7 0.974 2 
0.953 7 

0.953 7 0.974 2 0.990 1 0.997 1 0.999 8 

TABLE 2 ( c o n t i d )  

velocity and concentrating the boundary points near the wall has little effect on the 
rate of convergence of the solution. In fact, comparison of tables 2 (a)-( f) with tables 
1 (a)-( f )  shows that concentrating boundary points on the surface of the sphere near 
the wall actually has a small adverse effect on the rate of convergence ofthe coefficients 
T7,, Fi and TS, while slightly improving the rate of convergence of Tt and F',. The 
collocation scheme used in table 2 allows convergence of all six force and torque 
coefficients to the exact solution to four significant figures with M < 18 a t  all spacings 
tested. Convergence is achieved to four significant figures with M > 10 at  a = 1.0 
(b/a = 1-54), 2M 8 at a = 2 (6/a = 3.76) and M 2 6 a t  a = 3.0 (b/a = 10.1). The 
converged value of T i  for a = 3 is the same as that obtained using the first collocation 
scheme in table 1. 

In  light of the above numerical results, the second collocation scheme used in table 2 
in which boundary points are placed near 6' = 0,n is slightly more efficient when 
computing all of the force and torque coefficients simultaneously and will be used in 
the remainder of this study. 

4. Solutions for the motion of a sphere parallel to two plane walls 
In this section, collocation solutions involving two walls will be presented for the 

four problems outlined a t  the beginning of 9 2. To the best of the authors' knowledge, 
the only solutions available for these two-wall problems were obtained by the approxi- 
mate method of reflexions technique. 

25 F L Y  99 
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A number of formulae for the various force and torque coeficients have been ob- 
tained by method of reflexions techniques for special configurations involving a 
sphere between two plane parallel walls. These formulae are summarized in Happel 
& Brenner (1973,  pp. 322-329). For the purpose of comparison, the relevant formulae 
will now be presented. 

The position parameter s is defined as the ratio b / d  where d = b + c (see figure 1). 
For s = 0.25, i.e. when the centre of the sphere is located at + of the distance between 
the two walls, Faxen (1923)  obtained the formulae for pure translation 

( 4 . 1 )  
1 $’:= - 

1 -0*6526(a /b )  + 0.1475(a/b)3  - 0 .131(a /b )4 -  0.0644(a/b)s’ 

0 * 0 2 5 ( ~ / b ) ~  Tt = - ’ 1 - 0 . 6 5 2 6 ( ~ / b )  ’ 
while for s = 0.5 he obtained 

( 4 . 3 )  

For s = 0.25 Wakiya (1956)  obtained the following formulae for a rigidly held sphere 
in shear and Poiseuille flow respectively: 

1 $’: = - 
1 - 1*004(a/b)  +0 .418  ( a / b ) 3 + 0 * 2 1 ( ~ / b ) ~ - O - 1 6 9  (a /b)b‘  

(4 .4 )  
1 

- 1 - 0*6526(a /b )  + @4003(a/b)3-  0 .297(a /b)4’  
p” - 

Ti = 1 + 0*0506(a /b )  + 0 0 0 3 3 ( a / b ) ~ ;  (4 .5 )  

Hi - w b ) 2 1  
$’‘ = 1 - 0*6526(a /b )  + 0*3160(a/b)3-  0 . 2 4 2 ( ~ / b ) ~ ’  ( 4 . 6 )  

Tf = t (a /b)  [ 1 +  0*0758(a /b )  + 0 * 0 4 9 ( ~ / b ) ~ ] .  ( 4 . 7 )  

The predictions of Faxen’s formulae are compared with the present collocation 
solutions and the weak interaction method of reflexions results of Ho & Leal (1974)  
in figures 2 (a, b ) .  Figure 2 (a)  shows a comparison of solutions for the drag on a sphere 
translating parallel to two plane walls. The solid lines represent the converged collo- 
cation solutions which are in perfect agreement with the exact single-wall results of 
Goldman et aE. (1967a)  (s = 0). The weak interaction method of reflexions results of 
Ho & Leal ( 1  974)  give considerable error over the entire range of s. At b /a  = 1.1 the 
value of the drag predicted by the weak interaction theory of Ho & Leal is as much as 
50 % below the true value. At b/a = 2 the error is as high as 20 %. It is only for spacings 
of b/a >, 5 that the weak interaction theory gives reasonably accurate results. At 
s = 0.25 ,  Faxen’s result (equation ( 4 . 1 ) ) ,  which includes the effect of three additional 
terms in the iterative series, is in good agreement with the collocation theory. However, 
when s = 0.5 (equation ( 4 . 3 ) )  even this more accurate solution breaks down and gives 
an error as high as 40 yo a t  b /a  = 1.1. 

Figure 2 ( b )  shows similar results for the torque on a sphere translating parallel to 
two plane walls. When s = 0 the converged collocation solutions are in excellent 
agreement with the exact single-wall results of Goldman et a l .  (1967 a )  a t  all values of 
b/a.  For b/u  2 5 the weak interaction theory of Ho & Leal (1974)  is in very good 
agreement with the collocation theory for 0.2 < s < 0-5. For smaller values of s, as 
the second wall is moved further away from the sphere, the weak interaction theory 



The creeping motion of a sphere. Part 2 771 

0 0.1 0.2 0.3 0.4 0.5 

- O . O 4 l  , , 0 1.1, , 1 
-0.06 
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FIGURE 2. Comparison of solutions for (a)  the drag and ( b )  the torque on a sphere translating 
parallel to two plane walls. -, collocation (present study); - - - - -, Ho & Leal (1974), weak 
interaction method of reflexions; 0, Faxen (1923), equations (4.1)-(4.3) ; 0 ,  Goldman, COX & 
Brenner (1967a), exact. 

fails to  predict the change in sign of the torque resulting from the increasing importance 
of the closer wall. For the special case of s = 0-25 Faxen's result (equation (4.2)) is 
in good agreement with the collocation theory for b /a  2 5, but, for reasons which 
are not evident, provides an improvement over the first-order reflexion results of HO 
& Leal for the torque only when b/a  > 10. 

Table 3 shows a comparison between collocation solutions and results obtained 
using Wakiya's formulae (equations (4.4)-(4.7)) for the force and torque coeficients 
in Couette flow or two-dimensional Poiseuille flow for the special case s = 0.25. At 
large values of bla,  agreement between the two theories is excellent. At closer spacings 
there is a gradual decay in the accuracy of the solutions obtained by the method of 
reflexions. At b/a = 1.1 the error incurred in using WTakiya's formulae for F;, Ti, Fg 
and Ti is relatively small, 4, 3, 5 and 8 % respectively for this particular value of S. 

A serious practical limitation in obtaining the asymmetric bounded-flow solutions 
contained herein is the computation time required to generate the coefficient matrix 
(2.5). Computer running times for the two-wall asymmetric configurations were found 
to vary approximately as (5-15)M2 seconds on an AMDAHL 470/v6 computer 
which is roughly one order of magnitude higher than for the corresponding axisym- 
metric case where the sphere is translating perpendicular to the walls (Ganatos et al. 
1980). There are three reasonsfor the increase in computation time. First, because 

25-2 
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bla 

1.1 
1.25 
1 -5 
2.0 
3.0 
4.0 
8.0 

bla  

1.1 
1.25 
1-5 
2.0 
3.0 
4.0 
8.0 

bla  

1.1 
1-25 
1.5 
2.0 
3-0 
4-0 
8.0 

bla 

1-1 
1.25 
1.5 
2.0 
3.0 
4.0 
8.0 

(a)  p; 

theory 
Collocation 

1.900 
1.758 
1.599 
1.420 
1.261 
1.188 
1.088 

(b) T: 
Collocation 

theory 

1.039 
1.034 
1 *028 
1.023 
1.017 
1.013 
1.007 

(4 F; 
Collocation 

theory 

1.347 
1-26 1 
1.161 
1.044 
0.9364 
0.8858 
0.8147 

(4 T," 
Collocation 

theory 

0.2333 
0.2058 
0.1718 
0.1287 
0.08531 
0.06368 
0.03156 

Wakiya (1956), 
equation (4.4) 

1.982 
1.782 
1.600 
1.418 
1.260 
1.188 
1.088 

Wakiya (1956), 
equation (4.5) 

1.073 
1.06 1 
1.048 
1.034 
1.021 
1.015 
1.007 

Wakiya (1956), 
equation (4.6) 

1.422 
1.289 
1.167 
1.046 
0.9362 
0.8858 
0.8147 

Wakiya (1956), 
equation (4.7) 

0.2521 
0.2184 
0.1787 
0.1313 
0.08589 
0.06388 
0.03157 

TABLE 3. Comparison of values for force and torque coefficients obtained by the present 
collocation technique to values obtained by Wakiya (1956) for 8 = 0.25. 

there are three no-slip boundary conditions to be satisfied a t  each boundary point 
and three sets of unknown coefficients to be determined instead of two, the number 
of matrix elements (and the number of numerical integrations to be performed per 
run) increases from 4M2 to 9M2. Second, the expressions for the integrals in the 
asymmetric case (see appendix C) are considerably more complicated than the corres- 
ponding integrals for the axisymmetric case. Finally, since some of the force and torque 
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FIGURE 3 (a, 6 ) .  
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For legend see p. 774. 

coefficients in the asymmetric case are small in magnitude, the numerical integrations 
must be carried out with a tighter tolerance in order to compute these coefficients 
accurately. 

It should be noted that, since the primed coefficients in (2.24) depend only on the 
geometry and not on %he boundary conditions satisfied an the sphere or V,,, the force 
and torque coefficients ( 2 . 3 1 ) - ( 2 . 3 4 )  may be determined in a single computer run for 
a given geometry for all four of the problems outlined a t  the beginning of $ 2 .  A 
further reduction in the number of computer runs required may be made by com- 
puting the force and torque coefficients a t  position 1 - s using the results a t  position s 
by taking advantage of relations: 

Fi(l - s )  = q . ( s ) ,  ( 4 . 8 a )  

q( 1 - 8) = -Ti@); (4.8b) 

I q l - s )  = -P;(s), (4.9u) 

T;( 1 - 8 )  = T',(s); 

1 
1 - 8  

(4.9b) 

( 4 . 1 0 ~ )  F;( 1 - 8) = - - [sFi(s) + F$(s)],  
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FIGURE 3. (a) Force on a sphere translating parallel to two plane walls. ( b )  Torque on a sphere 
rotating about an axis parallel to two plane parallel walls. (c) Force on a sphere rotating about 
an axis parallel to two plane walls or torque on a sphere translating parallel to two plane walls. - , d/2a = constant; - - - - -, b/a = constant. 

2d 
a 

Ti( 1 - s) = q s )  + - Ti@); 
F$(l -s) = P$(s); 

T$(l -s) = -T$(s). 

(4. lob) 

(4.1 1 a)  
(4.1 1 b )  

Figures 3, 5 and 6 present converged values of the force and torque coefficients 
defined by equations (2.27)-(2.30) at various spacings and as a function of sphere 
position s. The dashed lines show the effect of the position of the wall a t  x = c for 
various sphere-to-wall spacings bla.  The solid lines show the variation of the force 
and torque cofficients as a function of particle position at  various fixed wall-to-wall 
spacings d / 2 a .  Figure 3 (a)  shows the force acting on a sphere translating in a quiescent 
fluid parallel to two plane walls. At a given wall-to-wall spacing d / 2 a ,  the sphere 
experiences minimum drag when it is located midway between the two walls. The 
drag becomes infinite as the sphere approaches either of the walls. The non-zero slope 
of the dashed lines (b/a = constant) over most of the range of s demonstrates the 
effect that the presence of the second wall has on the drag of the sphere. 

Figure 3(b)  shows the torque acting on a sphere which is rotating about an axis 
parallel to  the walls. The behaviour of the torque on a rotating sphere is somewhat 
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I X 

similar to the behaviour of the force on a translating sphere (see figure 3 a ) .  However, 
it should be noted that the presence of the second wall has little effect on the torque 
for 0 < s < 0.3 .  For s > 0.3 the torque rises sharply especially a t  close spacings. 

Figure 3 ( c )  shows the torque acting on a sphere translating parallel to the walls 
or the force on a sphere which is rotating about an axis parallel to the walls. The 
value of F; and Th is zero a t  s = 0-5 and becomes infinite as the sphere approaches 
one of the walls. It is interesting to note that the F; and TL coefficients change sign 
indicating that there is a second position other than midway between the two walls 
for which a sphere translating parallel to the walls will experience no torque or a sphere 
rotating about an axis parallel to the walls will experience no force. To help understand 
this intriguing behaviour we have plotted the velocity field in the plane y = 0 for both 
flow problems in figures 4(a, b )  using equation (2 .23)  for the geometry d / 2 a  = 3 ,  
s = 4. This geometry corresponds to the maximum negative value of F: and Tb for 
the curve d / 2 a  = 3 shown in figure 3 (c). The velocity vectors shown with arrowheads 
have been drawn to scale and show the magnitude and direction of the fluid motion. 
For cases where the magnitude of the velocity is too small to be visible on the scale 
shown the direction of the fluid motion is shown by a straight line without an arrow 
a t  the indicated point. Figure 4(a)  shows the velocity field for a sphere translating 
between two walls with no rotation. Intuitively, one would expect that the net torque 
acting on the sphere by the fluid would be counter-clockwise since the sphere would 
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FIUURE 4. (a) Velocity field induced by the translation of a sphere parallel t o  two plane walls. 
(a) Velocity field induced by the rotation of a sphere about an axis parallel to two plane parallel 
walls. d/2a = 3 , 8  = +. 
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FIUURE 5 (a). For legend see p. 777. 
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0 0.2 0.4 0.6 0-8 1 .o 

FIGURE 5. (a) Force and (b) torque on a rigidly held sphere in simple shear flow between two 
plane parallel walls induced by the motion of the wall at z = c. ---, d/2a  = constant ; - - - -, 
b/a = constant; - . - -, c/a = constant. 

S 

tend to  roll along the nearer wall. However, a separated region of closed streamlines 
and relatively stagnant fluid forms near. the wall which is further removed from the 
sphere. This stagnant region, which possesses a small clockwise circulation, obstructs 
the flow near the more distant wall and causes the shear stress on this side of the 
sphere to increase. The net effect is a small clockwise torque. 

Figure 4 ( b )  shows the velocity field induced by the rotation of a sphere about an 
axis parallel to the confining walls for the same geometry as shown in figure 4(a). 
There are two stagnation points on the nearer wall in the plane y = 0, one fore and 
one aft of the sphere. A stagnation streamline is attached normal to the wall a t  these 
points which encloses the sphere. Within this separated region, the fluid circulates 
about the sphere in closed streamlines. Outside the separated region, the fluid flows 
toward the positive-x direction. The reason for the negative force exerted by the fluid 
on the sphere is not readily,obvious from the figure, but can be deduced from the 
balance of pressure and viscous stresses on the surface of the sphere. For small values 
of s the viscous stresses on the near wall dominate and produce a thrust in the positive- 
x direction. For larger values of s as the sphere moves toward the centre of the channel 
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FIGURE 6. ( a )  Force and ( b )  torque on a rigidly held sphere in two-dimensional Poiseuille 
flow between two stationary walls. -, d /2a  = constant; - - - -, b/a  = constant. 
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the asymmetry of the pressure field fore and aft of the sphere is more important and 
causes a drag in the negative-x direction. 

Figure 5 ( a )  shows the force acting on a rigidly held sphere in Couette flow induced 
by the motion of the boundary a t  z = c parallel to  itself. For a fixed wall-to-wall 
spacing d / 2 a ,  minimum drag occurs for s < 0.5 a t  close wall-to-wall spacings and near 
s = 0.5 at  large spacings. Figure 5 ( b )  shows the torque acting on the sphere in Couette 
flow. At sufficiently large values of d/2a  the torque is observed to  increase, then 
decrease, and then sharply approach infinity as the sphere approaches the moving wall. 

Figures 6a,  b show similar results for the force and torque acting on a sphere in 
two-dimensional Poiseuille flow between two stationary walls. The force acting on 
the sphere decreases with increasing values of d/2a and approaches the parabolic 
curve shown for d / 2 a  = 03. The sphere experiences the maximum drag force when 
it is located midway between the two walls. Figure 6 ( b )  shows that the torque is zero 
at the centre-line due to  symmetry and increases almost linearly as the sphere 
approaches one of the walls. For a fixed value of b/a  the maximum value of the 
torque occurs for s slightly larger than 0.25. 

Solutions for any combination of the motions described in this paper may be 
obtained by a simple superposition of solutions. Thus for the most general case of 
parallel motion of a sphere between two plane walls, the force and torque exerted by 
the fluid on the sphere is given by 

FL = 67r,ua[UFL+ aOF7, + KFE + bSFS,], 

Tv = 8n,ua2[ UTL + aQT; + V,Ti + $aXTG], 

( 4.1 2 a )  

(4.12 b )  

where values of the force and torque coefficients may be obtained from figures 3 ,  5 
and 6 for a given geometry. 

5. Application of the solution technique in future research 
This paper has demonstrated that the boundary collocation technique previously 

used for quasi-steady unbounded multi-particle Stokes flows with planar symmetry 
may be applied to  treat planar symmetric bounded flow problems with high accuracy. 
Among the unsolved problems which fall in this category are the arbitrary off-axis 
motion of a sphere in a circular cylinder, the tumbling of a spheroid near a planar 
boundary and the entrance motion of a sphere into a circular pore or a two-dimensional 
slit. 

The success of the technique depends in large measure on the ability to  perform the 
integral transform of the disturbances felt on the confining boundaries analytically. 
Many of the definite integrals which arise for the more common co-ordinate systems 
may be found in the literature for Fourier and Hankel transforms. A serious limitation 
of the technique is the long computation time required for the numerical evaluation 
of the inversion integrals. Extreme care must be taken in writing the program to save 
repeatedly needed calculations in memory in order to keep execution time a t  a mini- 
mum. Since the bulk of the computation time is used in the numerical evaluation of 
the integrals, it is vitally important that  the integrating subroutine be as efficient 
as possible. 

I 
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Appendix A 
This appendix contains a listing of the starred dn, Bn and gn functions contained 

in (2.16) 

4 
d z ( a , P , z i )  = ---,{n(2n- 1)F2(a,/3,zi,n, 1 ) + 4 ( n - 2 )  

77 

4 
7r2 

d : * * ( a , , 8 , z i )  = --[n(2n- l ) z iF4(a ,p , z i ,n ,  1)-(n+ I )  (n-z )F4(a ,p , z i ,n -  1, l ) ] ,  

(A 7 )  

(A 8) 
4 
772 

a2**(a,P,zi)  = -nP4(a,p,zi,n+ 1,  I ) ,  

Appendix B 
This appendix contains a summary of the formulae used in performing the inner 

set of integrals required by (2.22). These formulae were obtained using results and 
general formulae foI Fourier transforms found in Erdelyi et al. ( 1  954). 
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In the formulae which follow, a and b are positive constants, u = (a2 + b2)* and Jo 
and J1 are Bessel functions of the first kind of order 0 and 1 respectively. 

(B 1) 
n 

cos (a cosy) cos (b  sin y )  dy = - Jo(u), 
2 

n b2 - a2 
cos2 y cos (a cosy) cos (b  sin y )  dy = - [ a2Jo(u) + - 

2 

2u2 U 

cosy sin y sin (a  cosy) sin (b sin y )  dy = - ~,(u)] , (B 3) 2 u2 

(B 4) 
n u  
2u 

COB y sin (a cosy) cos (b sin y) dy = - - Jl(zc). 





The creeping motion of a sphere. Part 2 783 

p = (x2+y2)4 
and 

where J ,  is the Bessel function of the first kind, K ,  is the modified Bessel function of 
the second kind and S,,(z,) is defined by (2.15). 
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